Mapping the genes underlying phenotypic variation

Virginie Courtier-Orgogozo Institut Jacques Monod, Paris

Tomato shape

Lycopericon esculentum

Lycopersicon esculentum cv. Yellow Pear

(Ku et al., 1999; Liu et al., 2002)

QTL mapping

Quantitative measure of the phenotype

Measure of 2 indexes L/D and Dmin/Dmax for 10 fruits per plant L/D : L= length, D = diameter at equator Dmin/Dmax

82 molecular markers on the 12 tomato chromosomes

One major locus near marker TG645

Two main files

Markers file

-start	
-Chromosome	1
CF5475	0.4
CF5573	24.7
СТ7895	41.0
СТ8903	59.0
CF5613	67.7
СТ7892	76.0
СТ890	89.0
СТ233	39.0
Telomere	50.0
-Chromosome	2
-Chromosome CF5671	2 0
CF5671	0
CF5671 CF5675	0 10.4
CF5671 CF5675 CF5673	0 10.4 34.7
CF5671 CF5675 CF5673 CT789	0 10.4 34.7 41.0
CF5671 CF5675 CF5673 CT789 CT890	0 10.4 34.7 41.0 89.0

Genotypes and phenotype(s) file

-start :	indi	vio	dua	als	5 I	naı	cke	ers	5				
Ind_1 0	0 1	1	0	0	0	0	0	1	2	2	2	2	
Ind_2 0	0 0	1	0	1	0	0	1	1	1	1	0	0	
Ind_3 2	2 2	2	2	1	0	1	1	1	1	0	0	0	
Ind_4 0	1 0	0	0	0	1	1	1	2	2	1	1	1	
Ind_5 0	1 0	0	0	0	1	1	1	1	2	2	2	2	
Ind_6 1	1 1	1	1	1	1	1	1	0	0	0	0	0	
Ind_7 1							1	n	n	1	1	1	
Ind_8 2	2 2	1	1	1	1	0	1	1	1	1	1	0	
Ind_9 1									1				
Ind_1 0	2 2	1	1	1	1	1	0	0	0	1	1	2	
-stop in	ndiv	idı	la	ls	ma	ar}	دeı	2S					
		_	_	_									
-start			dua	als	5 t	ra	ait	S	1	L	ove	erD	named
Ind_1													
Ind_2	3.0												
Ind_3	4.0												
_	7.0												
—	6.5												
_	5.0												
_	3.5												
Ind_8	6.0)											

Simple linear regression for each marker

L/D of individual i = a + b.xi + ε xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp a,b = best fit parameters (least square regression) ε assumed to have a normal distribution

Test Ho: b = 0 versus H1: b = estimated b

Likelihood ratio test statistic

$$\begin{split} D &= -2(\ln(\text{likelihood for null model}) - \ln(\text{likelihood for alternative model})) \\ &= -2\ln\left(\frac{\text{likelihood for null model}}{\text{likelihood for alternative model}}\right). \end{split}$$

The probability distribution of the test statistic can be approximated by a chi-square distribution with (df1 – df2) degrees of freedom, where df1 and df2 are the degrees of freedom of models 1 and 2 respectively

Interval mapping

L/D of individual i = a + b.xi + e

xi = indicator variable specifying the probabilities of an individual being in different genotypes for the tested position, constructed by flanking makers xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp

a,b = best fit parameters (maximum likelihood)

Test Ho: b=0 versus H1: b=estimated b

Interval mapping

L/D of individual i = a + b.xi + e

xi = indicator variable specifying the probabilities of an individual being in different genotypes for the tested position, constructed by flanking makers xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp

a,b = best fit parameters (maximum likelihood)

Test Ho: b=0 versus H1: b=estimated b

Composite Interval mapping

L/D of individual i = a + b.xi + c.xi + e

xi = indicator variable specifying the probabilities of an individual being in different genotypes for the tested position, constructed by flanking makers xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp

yi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp at marker y

LOD score

L/D of individual i = a + b.xi + e

Test Ho: b = 0 versus H1: b = estimated b

Lo = pr (data | no QTL) – phenotypes assumed to follow a normal distribution L1 = pr (data | QTL at tested position)

$$LOD = -\log\frac{L_0}{L_1}$$

Significance threshold

10,000 permutations of phenotype/genotype data

- $\rightarrow\,$ random distribution of LOD scores
 - \rightarrow 1% or 5% significance threshold

One major locus near marker TG645

Sequencing of the region in the 2 tomato varieties

1 SNP (single nucleotide polymorphism) et 1 indel (insertion-deletion) of 2bp in non-coding regions

L. esculentum cv. Yellow Pear

1 SNP in *ORF6* : G496T, stop codon stop, truncated protein with last 75 amino acids missing

Hypothesis: the causing gene is *ORF6* = *OVATE*

The causing gene is OVATE/ORF6

Same mutation in 3 other pear tomato varieties

Complementation of the mutation by transgenesis

OVATE = protein with NLS (nuclear localization signal), unknown function, expressed in developing fruits

Evolution of morphology in threespine sticklebacks

Paxton Lake, Canada

Gasterosteus aculeatus

(Peichel et al., 2001; Shapiro et al, 2004; Chan et al. 2010)

Marine fishes with robust pelvis = ancestral

Freshwater fishes with reduced pelvic structures = derived, independently at least 20 times

- limited calcium availability
- absence of gape-limited predatory fishes
- predation by grasping insects

Last glacier retreat = 10 000 – 20 000 years ago

QTL mapping

(Shapiro et al., 2004)

Several independent deletions in the cis-regulatory region of *Pitx1*

Region sequenced in two lake populations: a 2-kb deletion in one and a 757-bp deletion in the other one

SNP genotyping in 13 populations with reduced pelvis and in 21 populations with complete pelvis

Test of *Pitx1* cisregulatory regions

Rescue of a pelvis in freshwater individuals

Pitx1 is in a fragile DNA region

Control = artificial chromosome without test region

(Xie et al., 2019)

14.21: Courtesy of Mike Shapiro and David Kingsley.

Evolution of extra bristles

Interspecific change in *D. quadrilineata*

D. melanogaster D. quadrilineata

Intraspecific change in *D. melanogaster*

Marcellini and Simpson 2005, Gilbert et al. 2005

Finding genetic rules on bristle evolution

Randsholt and Santamaria 2008

color, type, orientation shape and size presence/absence

CRE mutations in *achaete-scute*

Aristotle, Historia animalium, book I, 2, 300BC

Stern and Orgogozo 2009

Bristle development

scute cis-regulatory elements are "master switches"

Simpson 2007

Gómez-Skarmeta 2003

Extra bristles in D. quadrilineata

Extra bristles in *D. quadrilineata* correlate with larger *scute* expression domain

In situ hybridization

Test for a cis-regulatory change (1)

D.melanogaster transgenics

Test for a cis-regulatory change (2)

D.melanogaster transgenics

Alignment of the DC region

Genetic evolution is partly predictable

Stern and Orgogozo 2009 Science

Extra bristles in *D. melanogaster*-Marrakech

correlate with larger scute expression domain

Gibert et al 2005

Extra bristles in *D. melanogaster*-Marrakech due to mutation(s) in *poils-au-dos*

Gibert et al 2005
Short-term evolution...

...versus long-term evolution

D. melanogaster

D. quadrilineata

cis-regulatory mutation change in the thorax only

```
(Marcellini et al. 2006)
```

Methods to identify the genes and the mutations responsible for phenotypic evolution

Various methods

<u>Genetic</u> which chromosome (ex: autosomal versus sex) QTL mapping Genetic association studies Complementation tests

<u>General biology</u> General knowledge of the genes involved in the phenotype Similarity with a known phenotype Correlation with a change in gene expression level/pattern

Final test of protein activity

in vitro in *E. coli*, by transgenesis in the studied species or the closest model organism (ex: *beta-defensin* of dogs tested in mouse)

Final test of cis-regulatory regions

- with reporter constructs, transgenesis, comparison of both regions
- comparison of allele expression levels in hybrids (pyrosequencing)

Two types of approaches

no a priori, fewer bias long and tedious rarely ends with identification of the gene Based on an a priori idea can be fast and efficient

only with strains/species which produce fertile hybrids

will only find known genes

In both cases, genes with small effect are more difficult to identify

Linkage Mapping

Crosses in the lab

Association Mapping

Past crosses in natural populations

Genome-wide association study (GWAS)

Manhattan plot depicting several strongly associated risk loci. Each dot represents a SNP, with the X-axis showing genomic location and Y-axis showing association level.

Wikipedia

GWAS typically identify common alleles

Allele Frequency

Methodology of a case-control GWA study

The allele count of each measured SNP is evaluated, in this case with a chi-squared test, to identify variants associated with the trait in question.

Wikipedia

Regional association plot

Association to LDL-cholesterol levels.

The haploblock structure is visualized with colour scale and the association level is given by the left Y-axis.

The dot representing the rs73015013 SNP (in the topmiddle) has a high Y-axis location because this SNP explains some of the variation in LDL-cholesterol.

Wikipedia

THREE APPROACHES to FIND the GOLDEN LOCI of EVOLUTION

FORWARD GENETICS

From traits to genes Little Ascertainment Bias, but Micro-Evolution only

Courtier-Orgogozo et al. 2020 NAR

REVERSE GENETICS From genes to traits Experimental Evidence

3 categories, each with biases

Candidate Gene

Experimental
Principle

Example

Ascertainment Bias on Locus Identification

Molecular Type Bias

Trait Type Bias

Taxonomic Breadth

Reverse Genetics: looking for sequence differences and trait effects based on previous studies of a given gene

> 66 cases of color variation associated to *MC1R* coding mutations in vertebrates

High

Favors identification of **coding mutations** Favors traits with small

molecular targets, large-effect size

Large

Linkage Mapping

Forward Genetics: trait mapping in hybrids obtained from laboratory crosses, using recombination over a few generations

F2 crosses between melanic and amelanic phenotypes in cavefish : identification of *MC1R* and *Oca2* alleles in distinct cave populations

Low to Intermediate (depending on resolution / cross size)

Little molecular bias

Amenable to dissection of complex traits with small-effect size (large crosses, multiparental families)

Narrow, limited to interfertile lineages (populations or sister species)

Association Mapping

Forward Genetics: statistical SNP/character state

association in large cohorts, using recombination over many generations

GWAS of human pigmentation (skin, hair, eyes): identification and confirmation of causal variants at >15 genes including *Oca2* p.His615Arg in Eastern Asia

Low

Can miss structural variants (short read genotyping)

Most common approach for complex traits with small-effect size

Very narrow, limited to polymorphic or intermixing populations

QTL Mapping

4 steps: crosses, genotyping, phenotyping, statistical analysis

Crosses

Backcross with one line Backcross in both directions F2

Crosses for several generations Introgression lines Recombinant Inbred Lines

• • •

Always try to maximize the number of recombination events

Markers

yes-no PCR PCR length polymorphism Pyrosequencing Probe hybridization Microarray RADseq High-throughput sequencing

How many markers?

theory

practice

