Our goal is to understand how and why specific phenotypes arise during evolution. We use all the available approaches (genomics, developmental biology, biochemistry, behavioral assays, genetics, etc.) to tackle the problem.

Research Projects
Databases
Protocols
BioInfo

Research Projects

Evolution of fly glue and biomimetism (PI: V. Courtier-Orgogozo)

mel-pupa-gluedAt the end of the larval stage, Drosophila larvae produce a proteinaceous glue that allows the animal to adhere to a substrate for several days during metamorphosis. We aim to use the powerful genetic tools of the model organism Drosophila melanogaster to explore the molecular basis for fly glue adhesion. We want to identify the genes involved in glue adhesion and understand how they have changed during evolution so that the glue can stick to various substrates in diverse environments. We developed a new assay to quantify Drosophila glue adhesiveness and we compare adhesion between different Drosophila melanogaster populations and Drosophila species in order to identify the most adhesive fly glues. One of our ultimate goals is to develop new bioadhesives inspired from Drosophila glue.

Evolution of left-right size asymmetry (PI: Michael Lang, now in ECGE)

pachea-asymHow left-right asymmetries in organ size develop remains a mystery. Drosophila pachea has evolved a unique left-right asymmetry in genitalia lobes. No left-right size asymmetry has been described in D. melanogaster. We are trying to uncover the mechanisms that triger asymmetric lobe development and the role of these asymmetric lobes during copulation. We use a stock of Drosophila pachea containing spontaneous symmetric mutant males and we perform micro-scale laser removal of lobe bristles and micro-scale surgery of lobes. We are also examining left-right asymmetries in behavior and morphology in species closely related to D. pachea, in order to understand how left-right asymmetry in lobe size evolved in D. pachea.

Evolution of genitalia (PI: V. Courtier-Orgogozo)

hyp-bristlesWe wish to understand how the morphology of genital organs change rapidly during evolution. We combine developmental studies, genomics, genetics, quantitative genetics, population genetics, microCT scans, laser microsurgery and behavioral experiments to understand how genes and cellular mechanisms modulate organ shape in a subtle and precise way, and how this can affect reproduction and long-term evolution. We examine the following genital organs: hypandrial bristles, ventral branches and posterior lobes.

Living on senita cactus (PI: V. Courtier-Orgogozo)

cactus-smallDrosophila pachea is one of the rare insect species that is unable to metabolise cholesterol. It lives exclusively on one host plant, the senita cactus, and it requires 7-dehydrogenated sterols produced by this cactus to survive. We identified several coding mutations in an enzyme gene that have made D. pachea dependent on its host cactus. Our work suggests that these mutations are beneficial for D. pachea and have been subject to positive selection.
Drosophila pachea has also evolved a resistance towards the toxic compounds of its host cactus. We would like to investigate the genetic basis of this resistance. We also plan to study how a moth species adapted to the senita cactus.

The origin of COVID-19

Screenshot 2021-07-06 at 16.39.59  

Click here for more details.

Databases

Gephebase

contains a list of all the genes and mutations that have been found to be responsible for phenotypic differences (morphological, physiological and behavioral traits) between populations or strains for pluricellular organisms. A preliminary list was deposited in Dryad in 2013 and the full open access website is available here.

FlyPhenomics

provides a compilation of the phenotypes that have been reported to differ between at least two species of the D. melanogaster subgroup. More than 150 morphological, physiological and behavioral differences have been described between 1919 and 2006.
associated paper: Orgogozo V, Stern DL, How different are recently diverged species? More than 150 phenotypic differences have been reported for the D. melanogaster species subgroup. Fly 2009 Mar-Apr;3(2):117.

FlyPNS

description of the embryonic and larval peripheral nervous system of D. melanogaster.
made with Wesley Grueber.
associated paperOrgogozo V, Grueber WB, FlyPNS, a database of the Drosophila embryonic and larval peripheral nervous system. BMC Dev Biol. 2005 Feb 17; 5(1):4.

Protocols

Link to our list of protocols

BioInfo

Old BioInfo Club website

New BioInfo Club website